skip to main content


Search for: All records

Creators/Authors contains: "Trivedi, Dhara J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 15, 2024
  2. The increased computational and experimental interest in perovskite systems comprising novel phases and reduced dimensionality has greatly expanded the search space for this class of materials. In similar fields, unified frameworks exist for the procedural generation and subsequent analysis of these complex condensed matter systems. Given the relatively recent rise in popularity of these novel perovskite phases, such a framework is yet to be created. In this work, we introduce Pyrovskite, an open source software package, to aid in both the high-throughput and fine-grained generation, simulation, and subsequent analysis of this expanded family of perovskite systems. Additionally, we introduce a new descriptor for octahedral distortions in systems, including, but not limited to, perovskites. This descriptor quantifies diagonal displacements of the B-site cation in a BX6 octahedral coordination environment, which has been shown to contribute to increased Rashba–Dresselhaus splitting in perovskite systems.

     
    more » « less
    Free, publicly-accessible full text available August 14, 2024
  3. Graphitic carbon nitride (GCN) has attracted significant attention due to its excellent performance in photocatalytic applications. Non-metal doping of GCN has been widely used to improve the efficiency of the material as a photocatalyst. Using a combination of time-domain density functional theory with nonadiabatic molecular dynamics, we study the charge carrier dynamics in oxygen and boron doped GCN systems. The reported simulations provide a detailed time-domain mechanistic description of the charge separation and recombination processes that are of fundamental importance while evaluating the photovoltaic and photocatalytic performance of the material. The appearance of smaller energy gaps due to the presence of dopant states improves the visible light absorption range of the doped systems. At the same time, the nonradiative lifetimes are shortened in the doped systems as compared to the pristine GCN. In the case of boron doped at a carbon (B–C–GCN), the charge recombination time is very long as compared to the other two doped systems owing to the smaller electron–phonon coupling strength between the valence band maximum and the trap state. The results suggest B–C–GCN as the most suitable candidate among three doped systems studied in this work for applications in photocatalysis. This work sheds light into the influence of dopants on quantum dynamics processes that govern GCN performance and, thus, guides toward building high-performance devices in photocatalysis.

     
    more » « less